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Abstract. It is shown that physically reasonable solutions of the field equations based on an 
R 2  lagrangianare possible. ( R  is the scalar curvature.) However, it is shown that experimental 
predictions of such a theory are at variance with observations. The most general quadratic 
lagrangian is also considered and it is shown that the R2 term must dominate thus invalidating 
gravitational equations based on a general quadratic lagrangian. 

1. Introduction 

Field equations based on a lagrangian quadratic in the curvature tensor have had a long 
history in the theory of general relativity. Eddington (1923) mentioned the possibility 
of gravitational equations based on the quadratic invariants RijRi’ and RijklRijk‘. Lanczos 
in a series of papers dating from 1932 (Lanczos 1932, 1938, 1949, 1957, 1962, 1963, 1966, 
1967, 1969) has advocated quadratic lagrangians as a basis for a unified field theory of 
gravitation and electromagnetism. Also, quadratic terms appear as corrections to the 
Einstein lagrangian R when one takes into account the effects of vacuum polarization. 
This area has been fairly extensively studied (De Witt 1964, Michel 1973, Nariai 1971, 
Nariai and Tomita 1971, Pechlaner and Sex1 1966, Ruzmaikina and Ruzmaikin 1970), 
but in the present paper we shall not examine quadratic lagrangians in this context, nor 
from the point of view envisaged in Lanczos’ work. We shall examine the viability of 
gravitational theory alone based on a lagrangian which is purely quadratic in the 
curvature tensor. Such a lagrangian does have some appeal: its similarity to the 
lagrangians of other field theories, for example, the electromagnetic or meson field, is 
obvious. In addition, the Schwarzschild solution is a solution of the resultant empty 
space equations. It might be argued, therefore, that the three crucial tests of general 
relativity do not eliminate equations based on a quadratic lagrangian from the class of 
possible gravitational equations. We shall see, however, that when one incorporates a 
stress-energy tensor into the theory then the observational consequences differ quite 
markedly from those of general relativity. This aspect of quadratic lagrangians has in 
fact been examined by Folomeshkin (1971). He concluded that in such a theory it was 
necessary for the trace of the energy-momentum tensor to be zero. He also concluded 
that if this were the case then the three crucial tests of relativity would be satisfied. It will 
be seen that Folomeshkin’s first conclusion is not correct provided that one is prepared 
to admit (i) a cosmological constant and (ii) the constant coupling geometry to  matter 
proportional to the cosmological constant. Even if we make these admissions then two 
of the three crucial tests of general relativity are not satisfied. This result finally elimi- 
nates quadratic lagrangian theories from the class of viable gravitational theories. 

1061 



1062 G V Bicknell 

In this paper the signature of space-time is taken to be (1,1, 1, - 1). This and other 
conventions are the same as that given in Synge (1966) with one exception: We use 
MKS units rather than Synge’s geometrized units in which G = C = 1. The quantity K 
is defined to  be GIC4. 

2. The most general quadratic lagrangian 

There are four algebraically independent invariants of the Riemann-Christoffel tensor, 
namely, 
I ,  = R 2  l 2  = RijRiJ  I 3 - R . ,  - Ilk1 Rijkl 1, = Rijkl*RiJkr,  

*Rijkl being the left-handed dual of Rijkl. 

ties holding (Lanczos 1938) : 
Only two of the above invariants are variationally independent, the following identi- 

and 

6 ( I 3  - 41, + 1 2 ) 6  d4x = 0. I 
Accordingly we adopt as the most general quadratic lagrangian a linear combination of 
I ,  and I , ,  ie, 

L = uRi jRiJ+f lR2,  

where U and f l  are constants. Matter is incorporated into the theory by a term M in the 
lagrangian so that the field equations are : 

6 (uRijR“+ PR2 + y M ) G  d4x = 0. I 
The stress energy tensor T j  is the hamiltonian derivative of M with respect to the g i j ,  

3. Equations of motion of test particles 

Since the tensor T j  is a hamiltonian derivative, it satisfies the conservation equations 

Tiij  = 0. 

For unstressed matter ( T j  = pc’v?) the above equations imply geodesic motion. 
For a test particle we assume that stress energy is negligible compared to the density and 
that test particles therefore follow geodesics of space-time as in other gravitational 
theories such as Einstein’s theory or the Brans-Dicke theory. 

4. Weak-field approximation and newtonian limit 

In view of the extensive use of the weak-field approximation in the following sections we 
make a few preliminary statements concerning this approximation here. 
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If one takes the metric to be 

g . .  = 7.. + h..  

v . .  i ij = h.,-' i j  2 ~ i j ~ ~ ~ h k 1 5  

Gij = i(OoYij- C i , j  - 5 j . i  4- v i j $ l 5 k , l ) %  

LJ If 11 

(q i j  = Minkowski tensor diag (1, 1, 1, - 1)) and defines 

then the Einstein tensor is, to first order in y i j  

(1) 

where 
k l  ti = "?ikJ 

and 0' is the d'Alembertian operator of flat space-time (cf Synge 1966 p 193). Usually 
one adopts the coordinate conditions t i  = 0 but this will not always be the case in this 
paper. As is well known, in the case of small curvature, jh , ,  closely approximates a 
newtonian potential, asymptotically approaching Kmc2/r ( M  = gravitational mass in 
MKS units). In regions occupied by matter fh,, satisfies an equation approximating 

V2(ih44) = -47t~pc' 

where p is the density (cf Synge 1966 p 181). These considerations enable us to form 
constraints on the parameters appearing in our equations. 

5. The lagrangian R2 

We consider first of all the lagrangian with an R2 term only. The empty-space field 
equations are 

or equivalently 

(3) 

Contracting these equations one finds that R satisfies the scalar wave equation, 

1 
R 

G . .  if = -- :Rgij+-(gijOR-R;ij) .  

namely, 

O R  = 0. (4) 
In view of the simple equation satisfied by R it is more convenient to  consider equa- 

tions (3) as Einstein-type equations with source terms derived from the scalar field R 
satisfying (4). 

Buchdahl(l962) rejected the R2 equations because of the non-existence of asymptoti- 
cally flat solutions. Briefly we can see the reason for Buchdahl's result. A static spheri- 
cally symmetric weak-field approximation implies that R = U + P/r (U and fl constants). 
The term -$Rgij  in the field equations then gives rise to terms in the metric proportional 
to r and r2 so that space-time is not asymptotically flat. Nevertheless it is still possible 
to indicate the existence of physically reasonable solutions to these equations. This is 
important in this context since one of our main conclusions is that the general quadratic 
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lagrangian is dominated by the R 2  term. We first of all note that solutions of Einstein’s 
equations with cosmological constant, le, 

G . .  = Ag..  11 ’ ( 5 )  

are solutions of (3) and (4), ie, the R’ equations. It is well known that there exist solutions 
of (9 for instance the de Sitter space-time with line element 

dr’ + r2(d€JZ + sin’ 8 d+*) - (1 -+A?) dt’, 
1 

1 -$At-’ 
ds2 = ~ 

which are not asymptotically flat. I t  is then natural to ask whether solutions of the R’ 
equations can be found which are asymptotic to a cosmological space-time satisfying ( 5 )  
the Einstein cosmological equations. Since, in the space-time described by such 
solutions, the background value of R would be -4A we normalize R by defining 
4 = - Ri4A and the R2 equations become 

and 

04 = 0. (7) 
Here 4 is of order unity. The term -$Rgij which led to asymptotic non-flatness is now 
essentially a cosmological term. 

A clearer insight into these equations is obtained if one considers them in the space 
conformally related by 

g1j = I4lgij. 

They are 

GI, = Ag! 11 , - g$,i$,j - igijg’kf$,k$,l) 

or* = 0, 

where 4 = lnl$l. These, of course, are Einstein’s equations with cosmological constant 
coupled to a zero-mass scalar field. Accordingly they should yield physically reasonable 
solutions which are asymptotic to, say, a de-Sitter space-time, and in which $ tends 
to zero far from matter. The metric of the original space-time is given by 

g . .  = e-eg!. 
[ J  11 

and so that metric too should be asymptotic to  a de-Sitter metric. Even so, when one 
incorporates matter into these equations, the resultant experimental predictions of 
bending of light and precession of Perihelion do  not agree with observations, as the 
following analysis shows. 

The field equations 

6 (R’ + p M ) F g  d4x = 0 s 
where M is the matter lagrangian, are : 
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4 as before is - R/4A and from the contraction of these equations satisfies 

P 
24A 

04 = -T. 

We take the coupling coefficient p = 6 4 n ~ A  and this enables us to display the equations 
in a form where their differences from Einstein's equations are clear 

When the cosmological term A$gij is neglected we find that we effectively have the 
Brans-Dicke equations for the case of w = 0 (w is the Brans-Dicke coupling constant 
(Brans and Dicke 1961)). Substituting w = 0 into the Brans-Dicke results for the bending 
of light and the precession of perihelion gives the following results : 

Deflection of light = x Einstein value 

Precession of perihelion = 5 x Einstein value. 

These results are far removed from recent observations. Experiments on light bending 
give 1.04'::;; x Einstein value (Muhleman et a1 1970) and precession of perihelion 
experiments give 1.005 f 0.007 x Einstein value (Shapiro et al 1972). 

We can only conclude that the above values are too widely at variance with observa- 
tions for the field equations based on L = R2 and coupled to matter in the above way 
to merit any further attention. 

It is implicit in the above that the scalar curvature be of cosmological order so that 
reasonable solutions of the R2 equations may be obtained. This fact is also of importance 
in the following section. 

6. L = RijRi j -vR2 

We turn now to consider the most general quadratic lagrangian which we may take to be 
RijR"-vR2. We shall show, by the use of the weak-field approximation, that in such a 
lagrangian the R2 term dominates. The results of the previous section consequently 
preclude the possibility of gravitational theory based on a quadratic lagrangian. 

The field equations 

6 (Ri jRiJ -vR2-pM)f id4x  = 0 s are 

OG, j+(1-2~)ORgi ,+(2~-  1)R,ij-2GokR,ijk 

+(2v- l)RGij+i[Gk,Gk'+(v- 1)R2]gij = p T j  (8) 
and the contraction of these equations is (2 - 6v)CR = pT. 

iOo2yij+(1 -2v)U0Rvij+(2v- l)R,ij = p?;,. 

A naive weak-field approximation (with coordinate condition ti = 0) yields 

Because of the square of the d'Alembertian operator appearing here, the newtonian 
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limit, described previously, obviously cannot be regained. On reconsideration of the 
field equations (8), however, one realizes that if the term (2v - l)R is large enough so that 
the term (2v- l)RGij is not relegated to second order in the weak-field approximation 
then a second order term proportional to  Ooyij survives. If we divide the field equations 
by (2v - l)R then they are exhibited in a form which shows their close relationship to the 
R2 equations 

Because of the term -i[(v - 1)/(2v - l)]Rgij, R once again needs to be of cosmological 
order and we once again put R = -4A4.  We take the coupling constant 
p = 32(2v - l ) A n ~ ,  and also make the substitution k2  = 4(2v - 1). k is taken to be real, 
for otherwise solutions of the field equations can be obtained representing waves 
travelling faster than light. Because of the assumption that (2v - l)R is 'large' then the 
parameter k2  is 'large'. The field equations are then 

The R2 equations are regained in the limit as v (and hence k) tends to infinity. 

7. Weak-field solution for a homogeneous sphere 

With laboratory experiments in mind we determine the field of a homogeneous sphere. 
This enables us to  determine a lower limit for k. We approximate 4 by 1 + x and neglect 
terms of order x 2 .  

The weak field equations are 

oo2?i j -  oo5i,j- oo<j,i+ qijqk'OO<k,i 

= k2(U0yij- ti,j- 5j,i+qijqk'5k,I)+k2(x,ij- ooxqij)+ 16nk:Tj (9) 
with x satisfying 

2v- 1 
6 ~ - 2  oox = 8nK- T, 

ti as defined by equation (2) is qklyik,l. Instead of the usual coordinate condition ti = 0 
we take 

Oo5i k2(5i-x,i) 

and the field equations become 

oozyij = k2Uoyij+ 16nk2 
2( 6~ - 2) 

where we have made use of (9) the equation for x. 
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For a homogeneous sphere with negligible stress energy T j  = p c ’ v y  for r < ro 

We take for the line element 
where ro  is the radius of the sphere and p, the density, is constant. 

ds2 = A(r)  a,, dx” dxP - B(r)(dx4)’ 

where A and B and their derivatives up to the third order are continuous. These con- 
ditions are contrary to the usual continuity conditions pertaining to general relativity but 
are appropriate for fourth-order equations. 

The external solutions which are subsequently obtained for hij ( = g i j  - q i j )  are 

umc’ 
3v- 1 

Kmc’ (kr,  cosh kr, - sinh 

We can see that, by absorbing the factor 38v-  3)/(3v - 1) into K the above solution 
corresponds to the newtonian approximation, if k is ‘large’. To determine how large k 
needs to be consider the gravitational ‘force’ d ( + l ~ ~ ~ ) / d r  which may be expressed as 

1 ( k r o - l ) + ( k r o +  l ) e - 2 k r o  ) i f + ! )  e-k‘r-r~’]. 
umcz[ - + 3( 2 k 3 4  

8v-3 
2 ( 3 ~ -  1) 

There are two significant components of this force which are manifest at a distance 
from the sphere, (r  - r,) ,  of order l/k.  The first is a l /r  component of the force propor- 
tional to  e-k(r-ro)/r and the second is an additional l/r’ term which at distances of order 
l /k effectively renormalizes the gravitational constant. We conclude on the basis of this 
analysis that laboratory experiments for the determination of the gravitational constant 
constrain l / k  to be less than 1 cm. A typical value for the cosmological constant A is 

m-’ (Adler et al 1965, p 367) and this, in view of the relationship between v, k 
and A implies that v is of the order of lo6,. 

8. Static solution for an arbitrary source 

The factor 32v - 1)/(6v - 2) appearing in (1 l), the final form of the weak-field equations, 
is effectively &, owing to  the approximate value of v obtained above. For static space- 
time with a perfect fluid source, equations (10) are 

V4yij = kZV2yi j+  16~ck’S ,~ ,  

where 

sij  = ( p c 2 + p ) ~ ~ + ( ~ p + b p c ’ ) q i j  

and = a,, is the four-velocity of matter. 
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The Green function for the above set of equations is 

1 1 e-kR __ 
k2R k 2  R 

where R is the distance from source point to field point so that the solution of the above 
equations is 

The subscript 0 refers to the source point. This solution can be split into two parts 

and 
e - k R  

= 4 S i j ( x ; ) R  duo. s 
.y‘:j is clearly the solution of these equations as k tends to infinity so that Y,’~ is the solu- 

tion of the RZ equations. By standard means we can show that 

where ro  is the maximum value of the radial coordinate of the surface of the distribution 
of matter, the origin of the coordinate system being inside the source. With the value of 
k determined previously, 7: will be insignificant for values of r greater than one centi- 
metre. Thus the weak-field solutions of the general quadratic lagrangian equations 
exhibit the same characteristics as the equations of the more specialized R2 theory when 
the distance from the source is much greater than a centimetre. We surmise that the same 
will be true for exact solutions of the quadratic lagrangian equations. We may add 
weight to this supposition by noting that the extra terms resulting from the more general 
quadratic lagrangian vanish exponentially. A post-newtonian approximation would still 
involve these exponentially vanishing terms. For the purposes of solar system tests of 
the theory the effects of the more general equations and that of the RZ theory are in- 
distinguishable. 

9. Conclusions 

There are strong indications that the field equations based on the lagrangian R2 rather 
than the standard R possess physically reasonable solutions. However, the introduction 
of a matter term into the lagrangian gives rise to theoretical predictions which are at 
variance with observation. This conclusion is not altered if one employs the most general 
quadratic lagrangian, namely RijRij- vRZ, since the resulting solutions of the equations 
for the latter theory differ insignificantly from those of the R2 theory. These results 
eliminate gravitational theories based on quadratic lagrangians from the realm of viable 
gravitational theories and point strongly towards the uniqueness of the Einstein equa- 
tions. 
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